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Background
At least 40% of all insect species worldwide are associated 
with endosymbiotic microbes, including Arsenophonus, 
Cardinium, Microsporidium, Rickettsia, Spiroplasma, 
and possibly the most common one: Wolbachia [1]. To 
enhance their own fitness through transmission in their 
host population, these microbes can manipulate their 
host reproduction and other life-history traits [2–4]. For 
example, many symbiont species can induce cytoplas-
mic incompatibility (CI), in which infected males are 
incompatible with females that are uninfected or infected 
with another incompatible symbiotic strain [5, 6]. Some 
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Abstract
Background  Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation 
between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid 
wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few 
related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species 
from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide 
a barrier to gene flow between these parasitoid host lineages.

Results  The symbiotic microbes Arsenophonus, Cardinium, Microsporidium and Spiroplasma were not detected in 
the Cotesia wasps. However, the endosymbiotic bacterium Wolbachia was present in at least eight Cotesia species, 
and hence we concentrated on it upon screening additional DNA extracts and SRAs from NCBI. Some of the closely 
related Cotesia species carry similar Wolbachia strains, but most Wolbachia strains showed patterns of horizontal 
transfer between phylogenetically distant host lineages.

Conclusions  The lack of co-phylogenetic signal between Wolbachia and Cotesia suggests that the symbiont and 
hosts have not coevolved to an extent that would drive species divergence between the Cotesia host lineages. 
However, as the most common facultative symbiont of Cotesia species, Wolbachia may still function as a key-player in 
the biology of the parasitoid wasps. Its precise role in the evolution of this complex clade of cryptic species remains to 
be experimentally investigated.
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endosymbiotic microbes can also manipulate behaviour 
of their host, such that infected and uninfected individu-
als have different mate or host preferences [7, 8, reviewed 
in 9]. These symbiont-induced reproductive and behav-
ioural alterations have thus long been proposed as key 
drivers of host speciation and diversity [10], via post-
mating isolation [11, 12], and/or pre-mating reproductive 
isolation between lineages of different infection status 
[13, 14]. For example, Shoemaker et al. [15] showed that 
in the Drosophila subquinaria species group, Wolbachia 
induces unidirectional CI, which, coupled with mate 
choice preferences, established a reproductive barrier 
between D. recens and D. subquinaria. While divergence 
between insect species often occurs independently of 
any symbiotic infection [16], the relative importance of 
microbial symbionts in this process is likely underesti-
mated as the prevalence, diversity, and role of symbionts 
remain unknown for many insect systems.

Biogeographic studies of symbiotic diversity and preva-
lence, combined with phylogenetic analyses, can pro-
vide clues to the ecological and evolutionary roles of 
symbionts in their host species clade. For example, obli-
gate symbionts transmitted exclusively maternally are 
likely to show high prevalence within their host species 
[17, 18], and their interactions can exhibit phylogenetic 
concordance between the symbiont and their host over 
long evolutionary periods. This pattern was, for example, 
observed between beneficial Wolbachia strains and their 
bedbug or nematode hosts [19, 20]. Similarly, post-mat-
ing and pre-mating reproductive isolation induced by 
facultative symbionts can also lead to co-divergence of 
the hosts and the symbionts [21], at least over short evo-
lutionary periods required for cryptic species to diverge. 
However, although facultative endosymbionts are pre-
dominantly transmitted vertically from mothers to off-
spring, these bacteria can also be horizontally transferred 
between host lineages and species [22–27]. Horizontal 
transfer events might occur between interacting species, 
including between parasitoids and their prey, between 
prey attacked by the same parasitoid species, or between 
predators or parasitoids sharing the same prey [28, 29]. 
Transfer may also occur between herbivores sharing the 
same host plants [23, 24], or between hybridizing species 
[30]. These events allow the symbiotic strains to colonize 
divergent host species, which could obscure the evolu-
tion of patterns of phylogenetic concordance between 
host and symbiont.

Parasitoid wasps in the genus Cotesia (Hymenoptera: 
Braconidae) parasitize Lepidoptera by laying a single or 
multiple eggs in their host caterpillars. The parasitoid 
wasp larvae grow while feeding on the developing cat-
erpillar’s haemolymph, and then pupate in conspicuous 
silken cocoons outside the body of the host [31]. The 
whole genus Cotesia accounts over 1000 named species 

worldwide, which parasitize many Lepidoptera species 
[32, 33]. In some cases, the Cotesia wasps can have dra-
matic effects on their host population dynamics [34]. For 
example, even by only infecting on average 10% of the 
caterpillars of Melitaea cinxia (Lepidoptera: Nymphali-
dae: Melitaeini) in the Åland Islands, Finland, Cotesia 
melitaearum has been found to cause localized decline 
within the larger host metapopulation [35, 36]. Further-
more, multiple Cotesia species can co-occur, where their 
host species occur together in a landscape. In North-
eastern Spain, seven cryptic Cotesia species each use 
only one to two of the local eight related Melitaea and 
two Euphydryas (Melitaeini) butterfly species, which 
share some host plant species, and live in shared meadow 
habitats [37, 38].

To date, Wolbachia is, to our knowledge, the only 
endosymbiont that has been previously screened for, and 
detected from Cotesia species. The bacterium has been 
found in C. glomerata (Linnaeus) and C. vestalis (Hali-
day) (synonym of C. plutellae (Kurdjumov)) [39], and in 
C. sesamiae from Cameron and Kenya [40, 41]. Branca et 
al. [41] demonstrated that Wolbachia induces unidirec-
tional CI in C. sesamiae from Sub-Saharan Africa, which 
is associated with host specialization, genetic structure, 
and biogeography. In the C. melitaearum clade, molec-
ular characterizations based on small number of genes 
have shown that specialization and competitive interac-
tions in local Cotesia are associated with the emergence 
of several cryptic sympatric Cotesia species [37, 42]. In 
this parasitoid wasp clade, however, the role of symbi-
ont-induced pre-mating and/or post-mating isolation 
between host lineages remains to be investigated. In this 
study, we aimed at identifying whether common insect 
endosymbiotic microorganisms, including Arsenopho-
nus, Cardinium, Microsporidium, Spiroplasma, and Wol-
bachia, were present in 15 Cotesia species and cryptic 
species parasitizing Melitaeini butterfly species across 
different geographic locations. After identifying Wolba-
chia as the only detectable symbiont in these Cotesia spe-
cies, we characterized the diversity and phylogeny of the 
Wolbachia strains, to investigate any potential inter-spe-
cies transfer of the symbionts. For this, we additionally 
included strains identified from six Cotesia species from 
which genomic data was publicly available on NCBI, and 
strains previously detected in diverse Lepidoptera spe-
cies known to be attacked by Cotesia wasps (reviewed in 
[43]). Our study provides an overview of the prevalence 
of diverse endosymbiotic microbes in Cotesia wasps, as 
well as a more thorough description of the diversity and 
phylogeny of the Wolbachia strains detected from Cote-
sia wasps. These are the first steps towards evaluating the 
role such symbionts might play in the evolutionary ecol-
ogy of parasitoid wasps.
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Materials and methods
Material
We recovered 323 DNA-extracts from Cotesia specimens 
(Table S1) stored in the − 20 °C freezers at the University 
of Helsinki. These samples were originally collected in 
the early 2000’s, and used for earlier studies of the phy-
logeny and butterfly-host specialization of Cotesia spe-
cies associated with checkerspot/fritillary butterflies 
(Melitaea and Euphydryas) [37, 42, 44]. They were pre-
viously characterized as representing at least 16 Cotesia 
species and cryptic species, and were predominantly 
collected from Finland (N = 94 from 4 species) and from 
Spain (N = 153 from 10 species). Moreover, samples from 
China (N = 8 specimens from 3 species), Estonia (N = 13 
from 1 species), France (N = 24 from 6 species), Hungary 
(N = 3 from 1 species), Italy (N = 3 from 1 species), Rus-
sia (N = 11 from 1 species), Sweden (N = 4 from 3 spe-
cies), UK (N = 3 from 2 species), and USA (N = 7 from 2 
species), were also included. No tissue nor DNA material 
were preserved from the original butterfly hosts of these 
wasps.

Molecular work on lab-stored DNA extracts
The DNA from all field collected wasps was extracted 
using NucleoSpin Tissue Kit (Macherey-Nagel) for the 
purpose of phylogenetic studies of the Cotesia wasp spe-
cies in the early 2000s by Kankare and colleagues [37, 
42, 44, 45]. The DNA extracts have since been preserved 
in the freezer (-20 °C) at the University of Helsinki, Fin-
land. The quality of each DNA extract was tested by PCR 
amplification of the mitochondrial cytochrome C oxi-
dase subunit I gene (COI - primer pair LCO/HCO) [46]. 
The DNA extracts that did not amplify with the primers 
LCO/HCO after two PCRs were removed from further 
analyses.

To identify which potential symbionts could be found 
in this parasitoid wasp system, we first screened 56 Cote-
sia specimens from six species, and from four countries 
(Estonia, Finland, Spain, Sweden), for infection with five 
microbial symbionts (Table S1) known for manipulating 
other insect species’ reproductive systems. We screened 
for the bacteria Spiroplasma and Cardinium using the 
16 S ribosomal RNA (16 S rRNA) gene [47–49], for the 
bacterium Arsenophonus by targeting the 23  S rRNA 
gene [50], for Wolbachia using Wolbachia-specific prim-
ers amplifying the wsp (Wolbachia surface protein) gene 
and up to five conserved Wolbachia Multilocus Sequence 
Typing (MLST) markers: coxA, fbpA, ftsZ, gatB and hcpA 
[51], and for the fungal symbiont Microsporidium by 
amplifying the 18 S rRNA gene [52]. We did not test for 
the presence of other microbial reproductive manipula-
tors, such as Rickettsia [4]. We later screened all remain-
ing Cotesia specimens for infection by the only detected 
symbiont: Wolbachia. One negative control (water 

sample) and one positive control were included in each 
PCR. Positive controls derived from DNA extractions of 
either a Wolbachia-infected Ischnura elegans specimen 
[53], an Arsenophonus-infected two-spot ladybird, Spi-
roplasma-infected Drosophila flies, Cardinium-infected 
midges (graciously provided by Prof. Hurst from Liver-
pool University), or a Microsporidium-infected Melitaea 
butterfly (Duplouy’s own lab). All primer sequences are 
given in Table S2. We Sanger sequenced the amplified 
genes on an ABI-3730 DNA Sequencer (Applied Biosys-
tems) at the University of Helsinki, Finland, using only 
the forward primers for each gene. All Wolbachia MLST 
loci and wsp gene sequences were identified by compar-
ing the resulting assemblies against the PubMLST data-
base (https://pubmlst.org) with BLAST [54].

Extracting, cleaning, and processing additional sequence 
material from NCBI repository
To put our findings on the most common symbiotic 
infection in Cotesia wasps in a larger phylogenetic con-
text, we expanded the host species range and Wolbachia 
strain diversities of our study by screening for Wolba-
chia genomic material in the genomic data from Cote-
sia sequencing projects publicly available from NCBI 
Sequence Read Archive (SRA) database (https://www.
ncbi.nlm.nih.gov/sra), and from the NCBI nucleotide 
database (https://www.ncbi.nlm.nih.gov/nucleotide). To 
do so, we first searched the SRA database using the key-
word “Cotesia”, selecting “DNA” as source and “Genome” 
as strategy. With this approach, we identified 28 genome 
sequencing projects including both short-read and long-
read data and representing six different Cotesia species 
(C. congregata, C. flavipes, C. glomerata, C. rubecula, 
C. sesamiae, and C. vestalis as synonym of C. plutellae) 
(Table S3).

We processed the short-read (Illumina) sequencing 
samples with Prinseq-lite (version 0.20.4) [55] to remove 
all sequences with at least one ambiguous nucleotide. 
The resulting reads were adapter trimmed and quality 
filtered using Trimmomatic (version 0.39) [56]. Quality 
assessment reports were obtained with FastQC [57] and 
summarized by MultiQC [58]. In contrast, the long-read 
sequences (Oxford Nanopore, ONT) were quality fil-
tered using NanoFilt (version 2.7.1) [59], which excluded 
sequences with a mean base quality lower than ten and 
lengths lower than 1  kb. The quality of the processed 
specimens was evaluated with NanoStat (version 1.5.0) 
[59].

We then screened the Illumina samples for Wolbachia 
infection using Kraken2 (version 2.0.8) provided with 
a custom database of 142 Wolbachia publicly available 
reference genomes [60] (140 reference genomes from 
GenBank and two (wDi and wLs) from http://nematodes.
org/) (See Table S4). Samples with at least 1000 reads 

https://pubmlst.org
https://www.ncbi.nlm.nih.gov/sra
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classified as Wolbachia according to Kraken2 [61] were 
then mapped against our Wolbachia reference genomes 
database using Bowtie2 (version 2.4.4) [62]. In contrast, 
the ONT sequencing data were directly aligned to Wol-
bachia reference genomes by Minimap2 (version 2.21) 
[63]. We used SAMtools (version 1.13) [64] to extract, 
merge, and sort reads properly mapped as pairs (mapping 
quality of 20 ) from the SAM file generated in the align-
ment step. For each alignment, the per-base read depth 
across two Wolbachia reference genomes (wMelPop 
strain GenBank CP046921.1 and wPipPel strain GenBank 
AM999887.1) was calculated using the SAMtools depth 
function and plotted in R with ggplot2 [65] (Fig. S2-S3). 
Mapped reads belonging to samples from the same Bio-
Sample were also processed as merged reads.

Finally, we built Wolbachia genome assemblies by 
individually assembling mapped reads from short- and 
long-read sequencing using the Unicycler pipeline (ver-
sion 0.4.9) [66]. The quality and the completeness of the 
resulting genome assemblies were estimated by QUAST 
(version 5.0.2) [67] and BUSCO (version 5.4.3, Rickett-
siales odb10 database) [68]. The assemblies, along with 
the two Wolbachia reference genomes mentioned above, 
were analysed using FastANI (version 1.3) [69]. FastANI 
estimates the Average Nucleotide Identity (ANI) met-
ric, enabling the clustering of genomes from different 
individuals/organisms. This method facilitates the infer-
ence of the supergroup placement of Wolbachia strains 
by utilizing their entire genomes, and is a more com-
prehensive approach compared to using a limited set of 
markers. Annotation of Wolbachia assemblies and refer-
ence genomes was performed with Prokka (version 1.4.6) 
[70] using default settings. Subsequently, the protein 
sequences predicted by Prokka were uploaded into the 
OrthoVenn3 web server (https://orthovenn3.bioinfoto-
olkits.net); accessed date: 15 July 2023) for identification 
and comparison of orthologous clusters (Fig. S4). All 
final assemblies are available from Zenodo at https://doi.
org/10.5281/zenodo.8422079.

Identifying the CI-associated genes
To explore whether the Wolbachia strains analysed here 
may be causing CI in their hosts, we searched for the 
CI-associated genes, cifA and cifB, in the newly assem-
bled Wolbachia genomes, using BLAST. For this pur-
pose, we downloaded the amino acid sequences of CifA 
and CifB from various Wolbachia strains in the NCBI 
database (Organism: Wolbachia, Source: RefSeq only) 
using the keywords “cytoplasmic incompatibility CifA” 
or “cytoplasmic incompatibility CifB”. Subsequently, 
these amino acid sequences served as queries in two dis-
tinct searches: TBLASTN against Wolbachia assemblies 
and BLASTP against proteomes derived from the same 
assemblies. Homologs covering at least 70% of the length 

of the query, with an identity of at least 50%, and having 
an E-value cut-off of 10− 10 were aligned to the intact Cif 
homologs identified by Martinez et al. [71] using MUS-
CLE [72].

Phylogenetic analyses
We inferred the phylogenetic relationships between the 
different Wolbachia strains of Cotesia wasps using the 
characterized Wolbachia MLST (coxA, fbpA, ftsZ, gatB 
and hcpA) and wsp genes sequences, from both DNA 
extracts and genomic sequence material from NCBI. 
To increase the list of Wolbachia strains included in 
our phylogeny, we screened the NCBI nucleotide data-
base for any of the five Wolbachia MLST markers [51] 
and wsp gene [73] from any Cotesia, and some of their 
known Lepidoptera host species. As of the 10th Janu-
ary 2023, there was no record of Wolbachia strain from 
Cotesia species in the PubMLST database, however, we 
still recovered an additional 40 MLST and wsp sequences 
from four Cotesia species (C. flavipes, C. glomerata, 
C. sesamiae and C. vestalis), and four Lepidoptera host 
species (Melitaea didyma, Chilo partellus, Pieris rapae, 
Plutella xylostella) from NCBI. The sample size and geo-
graphic sampling locations are provided in Table S1 and 
illustrated by Figure S1. Additionally, we also recovered 
the sequences of 12 reference Wolbachia strains belong-
ing to A-, B-, D- or F- supergroups and originating from 
different host species (https://pubmlst.org, wAu, wBm, 
wBol1, wClec-F, wHa, wIrr, wMelPop, wNo, wPel, wRi, 
wStri, wVit), one strain from the butterfly Danaus chry-
sippus (Nymphalidae), and three from the parasitoid 
wasp Hyposoter horticola (Hymenoptera: Ichneumonidae) 
(Table S1).

Individual MLST and wsp genes, and their concat-
enated alignments were produced using MAFFT [74], 
and manually curated in AliView [75]. We performed 
the phylogenetic analyses using RAxML [76] in raxml-
GUI 2.0 [77] applying a general time reversible model 
with gamma-distributed rate variation across sites and a 
proportion of invariable sites (GAMMAGTR + I) on indi-
vidual genes and concatenated alignments (Fig. S5 and 
S6). In all cases, node support was calculated by the rapid 
bootstrap feature of RAxML (100 replicates). The Wol-
bachia reference strains wBm [78] and wCle [79], which 
belong to the D- and F-supergroup, respectively, were 
used as outgroups to root the Wolbachia trees.

To infer whether Wolbachia strain diversification is 
concordant with the Cotesia wasp species diversification, 
we inferred the phylogenetic relationships between Cote-
sia species using the COI sequences of Cotesia species, 
employing a maximum likelihood approach. We sampled 
all COI sequences deposited in GenBank for 39 different 
Cotesia species, including sequences from our Cotesia 
specimens previously deposited by [42, 44] (Table S5). 

https://orthovenn3.bioinfotoolkits.net
https://orthovenn3.bioinfotoolkits.net
https://doi.org/10.5281/zenodo.8422079
https://doi.org/10.5281/zenodo.8422079
https://pubmlst.org
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As outgroups, we selected three species belonging to the 
Microgaster genus (Hymenoptera, Braconidae), namely 
Microgaster nobilis, M. deductor and M. subcomple-
tus (see Table S5). We generated a COI sequence align-
ment of 606 bp with MAFFT, that we manually curated 
for misaligned regions using AliView. We constructed 
a maximum likelihood phylogeny from this alignment 
using IQTREE [80] under the best-fit model automati-
cally selected by ModelFinder [81] (Fig.  1 and Fig. S7). 
Node support was estimated using ultrafast bootstrap-
ping with 1,000 replicates [82].

The CifA and CifB proteins have previously been clas-
sified into at least five distinct phylogenetic clades (types 
I–V) with different degrees of compatibility [71, 83–85]. 
To determine the group to which the annotated Cif 
homologs from Wolbachia found in Cotesia hosts belong, 
we performed a phylogenetic analysis. The best-fit substi-
tution model for the protein multiple sequence alignment 
was estimated using Modeltest-NG [86] in raxmlGUI 2.0 
and based on the Akaike information criterion (AIC), it 
was determined to be a JTT + G4 + F model. A maximum 
likelihood phylogenetic tree was built using RAxML 
in raxmlGUI 2.0 software with 100 rapid bootstraps 
(Fig. S8). Tree visualization and figures were obtained 
with ITOL [87] using the bipartitions output trees pro-
duced by RAxML and the bootstrap consensus tree from 
IQTREE analysis.

Results
Detection of endosymbionts in Cotesia DNA extracts
Out of the 323 DNA extracts selected for Wolbachia 
screening, 282 were of good quality based on COI ampli-
fication, suggesting most of the specimens had been suf-
ficiently preserved since extraction [42, 44].

The PCR amplifications for Arsenophonus, Spiroplasma 
or Microsporidium from 56 Cotesia specimens from four 
countries were negative (Table S1). There was one ampli-
fication using the Cardinium 16SrRNA primers in one 
unique specimen of C. melitaearum cryptic sp. H from 
Spain. However, our several attempts at sequencing this 
amplificon were not successful and hence we could also 
not confirm the presence of Cardinium in this Cote-
sia sample. In contrast, out of the 282 Cotesia samples 
of good quality, 50 (17.7%) carried the symbiotic bacte-
rium Wolbachia (Tables 1, S1), representing at least eight 
Cotesia species parasitizing Melitaeini butterfly species 
(Fig. 1).

Detection of endosymbionts in genome projects available 
in NCBI
By screening the 28 Cotesia genome projects (i.e. SRA 
projects) available on NCBI, we also identified 14 speci-
mens (50%) containing at least 1000 reads classified as 
Wolbachia (Table S6). Ten specimens (six specimens 

from C. glomerata, one from C. sesamiae and three 
from C. vestalis) included Wolbachia reads distributed 
throughout the Wolbachia reference genomes (Figs. S2-
S3), while the last four specimens only included reads 
with patchy coverage across the Wolbachia reference 
genomes. These last four projects were considered as 
potential false positive results for Wolbachia infection, 
with the Wolbachia reads representing potential con-
tamination, or insertions of Wolbachia sequences in the 
Cotesia host genomes.

Wolbachia strain diversity
Using the ten Cotesia genome projects found infected 
with Wolbachia, we partially assembled nine Wolbachia 
genomes. Three assemblies isolated from C. glomerata, 
exhibited BUSCO completeness of 86.8% (SRR13990441), 
87.7% (SRR13990442), and 41.8% (SAMEA7283786) with 
corresponding total sizes of 1.10 Mbp, 1.08 Mbp, and 
0.52 Mbp, respectively (See Tables S7-S8), while all other 
Wolbachia assemblies had a low number of BUSCO 
genes and were < 0.1 Mbp in size (Tables S7-S8). We were 
only able to extract between three and six MLST and wsp 
markers from the three largest Wolbachia assemblies.

Combining results obtained by direct amplification 
of the Wolbachia markers by PCRs and by screening 
the Wolbachia genomic assemblies built from Cotesia 
genomic sequences available on NCBI for those same 
markers, we obtained sequences from one to six markers 
for 38 (out of 61) Wolbachia-infected specimens (Table 
S1). We identified a total of 14 alleles for the ftsZ gene, 
nine for the hcpA gene, five for the coxA gene, six for 
fbpA, and six for gatB (See Table S1 for further details). 
This resulted in a concatenated alignment of 2559  bp, 
which allowed us to discriminate ten Wolbachia strains 
from ten Cotesia species (Table  1). We did not detect 
multiple infections in any of the individual Cotesia speci-
mens, but two species carried several Wolbachia strains. 
Specimens of C. koebelei reared from E. editha from 
western North America carried either a supergroup A or 
a B Wolbachia strain, and Spanish specimens of C. bignel-
lii carried a A-supergroup strain, while French specimens 
of the same species carried one of two B-supergroup 
strains (Fig. 1).

Analyses of the Wolbachia genomic assemblies
By comparing the predicted proteomes of our two larg-
est Wolbachia assemblies with an > 50% BUSCO com-
pleteness against those of the two Wolbachia reference 
genomes (wMelPop and wPipPel) using Prokka, we 
identified 954 protein-coding genes, 30 tRNAs, and 
one rRNA in the SRR13990441 assembly, and 996 pro-
tein-coding genes, 32 tRNAs, and three rRNAs in the 
SRR13990442 assembly (Table S9). In contrast, the two 
reference genomes, wMelPop and wPipPel, contained 
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1304 and 1410 protein-coding genes, 34 tRNAs, and 
three rRNAs, respectively (Table S9). The comparison 
using the Orthovenn 3 web server showed a total of 
1057 conserved orthologs in all four strains, with 590 

of these being single copy. All four strains shared 639 
ortholog clusters (Fig. S4). The SRR13990442 assembly 
contains 876 orthologs, while SRR13990441 has 875, and 
they both share 71 unique orthologs with the reference 

Fig. 1  Comparison between Cotesia parasitoid lineages and Wolbachia strains from Cotesia species. The Cotesia maximum likelihood phylogenetic tree 
was inferred from the nucleotide sequence alignment (606 bp) of the mitochondrial COI gene. The Wolbachia maximum likelihood tree was based on 
concatenated alignment (2,559 bp) of the MLST and wsp markers and rooted using reference genomes from Wolbachia strains wBm and wClec belong-
ing to the supergroups D and F, respectively. Cotesia species labelled A through N correspond to cryptic species described in [44]. The coloured lines link 
Cotesia host species to their respective Wolbachia strain infections; with a unique colour for each host species. Branches corresponding to different se-
quences obtained from different specimens within the same species, and sequences from different species but within the same genus (only in the case of 
the outgroup Microgaster), were collapsed and represented as orange triangles for visual clarity. Bootstrap support values > 50 are displayed at each node
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B-supergroup Wolbachia wPipPel, but only 21 with the 
A-supergroup Wolbachia wMelPop reference (Fig. S4). 
Similarly, the ANI analysis, which calculates the average 
nucleotide identity among orthologous gene pairs shared 
between two genomes, revealed a high similarity between 
wPipPel, SRR13990441, and SRR13990442, with ANI val-
ues around 98% in pairwise comparisons (Table S10). 
In contrast, wMelPop displayed a lower ANI (~ 85%) in 
pairwise comparisons with wPipPel, SRR13990441, and 

SRR13990442 (Table S10). Altogether, these results sug-
gest the two Wolbachia assemblies from Cotesia belong 
to the B-supergroup Wolbachia.

Finally, we partially extracted the CI-associated genes 
from our Wolbachia assemblies. With this, we identified 
one copy of a Type I CifA in the SRR13990441 assembly 
(Table S11, Fig. S8), and a truncated/partial copy of cifB 
in both the SRR13990441 assembly (contig 109, position 
1492–3201) and the SRR13990442 assembly (contig 221, 
position 1-1624). The sequences of the cifB gene from our 
Wolbachia assemblies were highly similar to that previ-
ously characterized from the fig wasp Kradibia gibbosae 
(Hymenoptera: Chalcidoidea) (WP_275944372.1), with-
out any report of the role played by the symbiont in this 
host species [88].

Phylogenetic analyses
Our phylogenetic tree of the COI mitochondrial gene of 
39 Cotesia species shows that the Cotesia wasps parasit-
izing Melitaeini butterflies belong to three distinct clades 
(See Fig. 1, S5-6:

 	• Clade 1 includes C. melitaearum cryptic species (D, 
E, F, G, H, I, M, N),

 	• Clade 2 includes C. koebelei,
 	• Clade 3 includes C. bignellii cryptic species C, and C. 

acuminata cryptic species (A, B, and K).

The Wolbachia phylogeny confirms that all Wolbachia 
strains characterized from Cotesia belonged to the A- 
and B-supergroups, with the majority (49/53, 92.4%) 
belonging to the B-supergroup (Fig.  1). Despite fewer 
representative taxa per phylogeny and lower resolution, 
phylogenies based only on individual gene alignments 
maintained similar sample groupings, with conserved 
strain assignment to supergroups A and B (Fig. S5), thus 
suggesting no recombination has occurred between the 
strains of the two supergroups in these Cotesia species. 
A visual comparison supports the lack of congruence and 
co-phylogeny between the maximum likelihood trees 
of Cotesia and their symbiotic strains. Phylogenetically 
close Wolbachia strains were found in phylogenetically 
distant Cotesia host species (Fig. 1, & S5-6), or in both a 
butterfly host and their Cotesia parasitoid (i.e. the wMdid 
from a M. didyma butterfly and the wCmelF strain from 
Cotesia wasps emerging from Spanish M. didyma butter-
flies, Fig. S5).

Discussion
We built up from early studies to bring some light on the 
possible role(s) of endosymbionts on the evolutionary 
history of Cotesia parasitoid wasps, particularly on the 
divergence between sympatric cryptic species. The com-
plex of Cotesia wasps parasitizing Melitaeini butterflies 

Table 1  Metadata for the Cotesia species and cryptic species 
found to be infected with Wolbachia: their butterfly host species, 
country of origin, and Wolbachia prevalence. Rows in grey 
highlight the specimens that were screened for all five symbionts 
(table S1), while rows in white include the specimens screened 
for Wolbachia only
Species Host 

species 
(reared 
from)

Country Infection rate 
(infected/total)

Strains 
detected

C. acu-
minata 
cryptic 
sp. B

Melitaea 
phoebe

Spain 24.4% (5/17) Unchar-
acterized

C. bignellii Euphy-
dryas 
aurinia

France 100.0% (2/2) wCbig

C. bignellii 
cryptic 
sp. C

Euphy-
dryas 
aurinia

Spain 50.0% (3/6) wCbigC

C. koebelei Euphy-
dryas 
editha

USA 100.0% (2/2) wCkoeA, 
wCkoeB

C. meli-
taearum 
cryptic 
sp. D

Euphy-
dryas 
aurinia

Spain 10.8% (4/37) wCmelD

C. meli-
taearum 
cryptic 
sp. F

Melitaea 
didyma

Spain 100% (12/12) wCmelF

C. meli-
taearum 
cryptic 
sp. G

Melitaea 
trivia

Spain 92.9% (13/14) wCmelG

C. meli-
taearum 
cryptic 
sp. H

Melitaea 
cinxia

Finland 11.1% (6/54) wC-
melH1

C. meli-
taearum 
cryptic 
sp. H

Melitaea 
cinxia

Russia 27.3% (3/11) Unchar-
acterized

C. 
glomerata

Pieris sp. 75% (6/8) wCglo

C. 
sesamiae

Stem 
boring 
moths

100% (1/1) Unchar-
acterized

C. vestalis Plutella 
sp.

75% (3/4) Unchar-
acterized
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belongs to three distinct clades, as previously shown by 
[44]. These three Cotesia clades are mostly specialists 
to the Melitaeini butterflies, but clustering based on the 
Lepidoptera host is not conserved across the genus Cote-
sia. Indeed, closely related Cotesia species to each of the 
three clades have been described as parasitoid wasps of 
divergent Lepidoptera. For example, C. glomerata para-
sitizes Pieris sp. butterflies (Pieridae), while C. specularis 
emerges from Lampides boeticus (Lycaenidae), and other 
Cotesia species are known to attack diverse moths (i.e. 
Chilo sp. for C. flavipes, or Plutella sp. for C. vestalis), 
with each of these Lepidoptera species feeding on a wide 
diversity of host plants. In their early studies, Kankare 
et al. [37, 42] suggested that direct competition between 
Cotesia wasps for the Melitaeini butterfly host species 
might have driven the divergence between their parasit-
oid wasp species and cryptic species. We did not detect 
the symbionts Arsenophonus, Cardinium, Microsporid-
ium and Spiroplasma, and did not test for infection with 
Rickettsia, however the endosymbiotic bacterium Wolba-
chia was found in 61 (17.9%) of all our samples, covering 
11 Cotesia species (52.4%) out of 21 included in the study. 
As in previous studies on Cotesia wasps species [39–41], 
and in insects in general [89, 90], such Wolbachia preva-
lence is still likely an underestimate of the true infection 
prevalence in the entire Cotesia genus. This is because 
our study covers only a small number of Cotesia species, 
populations and individuals representing only part of 
their geographic distributions [33].

Although the commonly used MLST markers have 
been criticised for being too conserved to allow reli-
able strain differentiation or infer precise phylogenetic 
relationships of closely related Wolbachia strains [91], 
comparison of the phylogenetic trees from Cotesia hosts 
and their Wolbachia symbionts clearly showed that dis-
tantly related Cotesia species share similar Wolbachia 
strains. Such lack of concordance between the host and 
the symbiont phylogenies has been previously described 
in diverse systems [22, 29]. This pattern suggests that 
Wolbachia strains have transferred horizontally, and not 
strictly vertically between mothers and their offspring. 
Because many Cotesia species occur in sympatry, shar-
ing either their geographical ranges, their local habitats, 
their hosts, which in some cases also share the same 
host plants [37, 92, 93], the Cotesia species complex 
offers plausible opportunities for Wolbachia to transfer 
horizontally:

First, divergent Cotesia wasps might have acquired 
their Wolbachia infections while parasitising infected 
caterpillars. Between others, studies by Vavre et al. [29], 
and Qi et al. [94] provide evidence of such horizontal 
transfers between Drosophila flies and their parasit-
oid wasps, and between whiteflies and their parasitoid 
wapss, respectively. Although Wolbachia was previously 

detected in M. didyma [95, 96], M. athalia, M. britomar-
tis [97], M. phoebe, M. ornata [98] and M. cinxia [22], 
genetic sequences for most of those strains were not 
publicly available (Nov. 2023). However, we did find that 
a sequence from the wsp gene of the Wolbachia strain 
infecting C. melitaearum, parasitizing M. didyma cat-
erpillars, was very similar to the wsp sequence from a 
strain infecting M. didyma. This suggests that this Wol-
bachia strain might have transferred between the Cotesia 
wasp and the Lepidoptera host, as also shown in Naso-
nia wasps and their Drosophila hosts [30]. But this is not 
always the case, as other strains characterized from other 
Lepidoptera species (i.e. wCpar from Chilo partellus, 
wPrap from Pieris rapae, and wPxyl from Plutella xylo-
stella) were phylogenetically divergent from the strains 
found in the Cotesia wasps infecting those Lepidoptera 
(C. flavipes, C. glomerata, C. vestalis, respectively).

Second, Wolbachia could be exchanged between para-
sitoid wasps simultaneously parasitising the same host 
caterpillar. Such hypothesis was previously tested by 
[29], who found that Leptopilina, Trichopria and Asobara 
parasitoids of Drosophila flies can share identical Wolba-
chia bacteria, at least based on their wsp gene sequences. 
In Åland, M. cinxia is commonly parasitized by several 
parasitoid wasps [99]. Out of these, Hyposoter horticola 
is known to carry Wolbachia [100], and we showed that 
this Wolbachia strain (wHho) is phylogenetically closely 
related to the Wolbachia characterized from C. meli-
taearum. These results suggest that at least some Wolba-
chia might also transfer horizontally between divergent 
parasitoid species sharing the same Lepidoptera hosts, 
or between the parasitoid wasps and their Lepidoptera 
hosts. In the future, hypotheses presented above could 
be more comprehensively tested in the Cotesia system by 
simultaneously screening Cotesia wasps and their Lepi-
doptera hosts for endosymbiotic infections.

The lack of co-divergence between the Wolbachia 
strains and their associated Cotesia lineages does not 
allow us to fully reject the hypothesis that the symbiont 
might be involved in the restricted gene flow between 
at least some of the sympatric Cotesia lineages [101]. 
For example, CI could occur between Cotesia lineages 
that carry divergent Wolbachia strains, such as C. meli-
taearum sp. F and G, or between Cotesia lineages of 
different infection status, such as C. melitaearum sp. D 
and E. In the future, experimental rearing [102, 103] and 
crossing between lineages, associated with microscopy 
imagery, should confirm the expression of CI between 
different host lineages. Indeed, because CI causes vis-
ible morphological abnormalities of sperm in the testes 
of infected males [104, 105], or cytological embryonic 
defects, microscopic approaches may be used to confirm 
post-mating isolation between Cotesia lineages, as shown 
previously in Culex pipiens, Drosophila simulans and the 
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parasitoid wasp, Nasonia [106–109]. Here, we isolated a 
complete homolog of the cifA gene and a partial homo-
log of cifB gene, which code for the Wolbachia-induced 
CI phenotype in other species [83, 110, 111]. However, 
with the growing general interest for whole genome 
sequencing of parasitoid wasps, especially of species used 
as agricultural pest control agents, we expect more Cote-
sia genomic projects to be completed in the near future. 
These projects will hopefully assemble and analyse the 
whole genomes of Wolbachia and other endosymbiotic 
species associated with Cotesia hosts, and soon provide 
material for holistic estimate of the endosymbionts pat-
terns of diversity, and their function(s) in this complex of 
parasitoid wasp species.
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